Shi-Hai Dong

Professor of Physics
Department of Physics, Superior School of Physics and Mathematics
National Polytechnic Institute, Mexico
E-mail: dongsh2@yahoo.com
Page: http://esfm.ipn.mx/~shihai/

Fields of interest:

  • Quantum Mechanics
  • Group Theory
  • Algebraic Method

 

Recent publications:

M. S. Child, S.-H. Dong, and X.-G. Wang:
Quantum states of a sextic potential: hidden symmetry and quantum monodromy,
J. Phys. A 32, (2000), 5653.

S.-H. Dong, R. Lemus and A. Frank:

Ladder operators for the Morse potential,
Int. J. Quan. Chem. 86, 433 (2002).

X.Y. Gu, Z.Q. Ma and S.H. Dong:
The Levinson theorem for the Dirac equation in D+1 dimensions,
Phys. Rev. A, Vol. 67, (2003), 062715.

J. Yu and S.H. Dong:
Exactly solvable potentials for the Schrödinger equation with spatially dependent mass,
Phys. Lett. A, Vol. 325, (2004), 194.

W.-Ch. Qiang and S.H. Dong:
Radial position-momentum uncertainties for the Dirac hydrogen-like atoms,
J. Phys. A: Math. Gen., Vol. 39, (2006), 8663.

Z.-Q. Ma, S.H. Dong and L.-Y. Wang:
Levinson theorem for Dirac equation in one dimension,
Phy. Rev. A, Vol. 74, (2006), 012712.

W.-C. Qiang and S.-H. Dong:
Analytical approximations to the solutions of the Manning-Rosen potential with centrifugal term,
Phys. Lett. A 368,  (2007), 13.

X.-Y. Gu, S.-H. Dong and Z.-Q. Ma:
Energy spectra for modified Rosen-Morse potential solved by exact quantization rule,
J. Phys. A: Math. Theor. 42,  (2009), 035303.

G. -F. Wei and S.-H. Dong:
Algebraic approach to pseudospin symmetry for Dirac equation with scalar and vector modified Pöschl-Teller potential,
EPL 87,  (2009), 40004.

S.H. Dong:
Factorization Method in Quantum Mechanics,
Kluwer Academic Publishers, Springer, 2007.