Kevin Vander Meulen

Professor of Mathematics
Department of Mathematics
Redeemer University College
E-mail: kvanderm@redeemer.ca
Page: http://cs.redeemer.ca/math/kvhome.html

Fields of interest:

combinatorial matrix theory, sign pattern and zero-nonzero pattern analysis, inertia

Recent publications:

M. Cavers, C. Garnett, I.-J. Kim, D. Olesky, P. van den Driessche, and K. Vander Meulen,
“Techniques for identifying inertially arbitrary patterns,”
Electronic Journal of Linear Algebra, 26 (2013) 71–89.

H. Bergsma, K. Vander Meulen, and A. van Tuyl,
“Potentially nilpotent patterns and the nilpotent-Jacobian method,’”
Linear Algebra and its Applications, 436 (2012) 4433–4445.

N. Campbell, K. Vander Meulen, and A. van Tuyl,
“Structure of nilpotent matrices over fields,”
Electronic Journal of Linear Algebra, 22 (2011) 931–958.

M. Cavers, K. Vander Meulen, and L. Vanderspek,
“Sparse inertially arbitrary patterns,”
Linear Algebra and its Applications, 431 (2009) 2024–2034.

I.-J. Kim, D. Olesky, B. Shader, P. van den Driessche, H. van der Holst, and K. Vander Meulen,
“Generating potentially nilpotent full sign patterns,”
Electronic Journal of Linear Algebra, 18 (2009) 162–175.

L. DeAlba, I. Hentzel, L. Hogben, J. McDonald, R. Mikkelson, O. Pryporova, B. Shader, and K. Vander Meulen,
“Spectrally arbitrary patterns: reducibility and the 2n conjecture for n = 5,”
Linear Algebra and its Applications, 423 (2007) 262–276.

M. Cavers,
“Spectrally and inertially arbitrary sign patterns,”
Linear Algebra and its Applications, 394, (2005) 53—72.

D. Gregory, B. Heyink, and K. Vander Meulen,
“Inertia and biclique decompositions of joins of graphs,”
Journal of Combinatorial Theory B, 88:1 (2003) 135–151.